已知椭圆的离心率为,短轴的一个端点到右焦点的距离为2,(1)试求椭圆的方程;(2)若斜率为的直线与椭圆交于、两点,点为椭圆上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论.
(本小题满分12分) 如图,平面⊥平面,是直角三角形,,四边形是直角梯形,其中,,,且,是的中点,分别是的中点. (Ⅰ)求证:平面; (Ⅱ)求二面角的正切值.
已知数列是递增数列,且满足。 (1)若是等差数列,求数列的通项公式; (2)对于(1)中,令,求数列的前项和。
(本小题满分14分)已知函数 (1)求函数的极值点; (2)若直线过点(0,—1),并且与曲线相切,求直线的方程; (3)设函数,其中,求函数在上的最小值.(其中e为自然对数的底数
(本小题满分12分) 已知椭圆的焦距为,椭圆上任意一点到椭圆两个焦点的距离之和为6. (Ⅰ)求椭圆的方程; (Ⅱ)设直线与椭圆交于两点,点(0,1),且=,求直线的方程.
(本小题满分12分)在几何体ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F是BC的中点,AB=AC=BE=2,CD=1 (Ⅰ)求证:DC∥平面ABE; (Ⅱ)求证:AF⊥平面BCDE; (Ⅲ)求证:平面AFD⊥平面AFE.