已知椭圆的离心率为,短轴的一个端点到右焦点的距离为2,(1)试求椭圆的方程;(2)若斜率为的直线与椭圆交于、两点,点为椭圆上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论.
(本小题满分10分)在直角坐标系xOy中,直线的参数方程为(为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为ρ=2sinθ. (1)求圆C的直角坐标方程; (2)设圆C与直线交于点.若点的坐标为(3,),求.
(本小题满分12分)如图,在三棱柱中,侧面为菱形, (1)求证:平面平面; (2)若,,求四棱锥的体积。
(本小题满分12分)如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.(1)求证:平面; (2)侧棱上是否存在点,使得平面?若存在,指出点的位置并证明;若不存在,请说明理由。
(本小题满分12分)如图(1),在直角梯形中,,,.将沿折起,使平面平面,得到几何体,如图所示(2). (Ⅰ)求证:平面; (Ⅱ)求几何体的体积.
(本小题满分12分)如图,在四棱锥中,底面为平行四边形,底面. (1)求证:; (2)若求三棱锥的高。