(本小题满分12分)已知直线过定点,且与抛物线交于、两点,抛物线在、两点处的切线的相交于点.(I)求点的轨迹方程;(II)求三角形面积的最小值.
(本小题满分16分)对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.(1)判断函数是否为“()型函数”,并说明理由;(2)已知函数是“(1,4)型函数”, 当时,都有成立,且当时,,若,试求的取值范围.
(本小题满分16分) 如图,在平面直角坐标系中,已知点为椭圆的右顶点, 点,点在椭圆上, .(1)求直线的方程; (2)求直线被过三点的圆截得的弦长;(3)是否存在分别以为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由
(本小题满分14分)在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对称图形),其中矩形的三边、、由长6分米的材料弯折而成,边的长为分米();曲线拟从以下两种曲线中选择一种:曲线是一段余弦曲线(在如图所示的平面直角坐标系中,其解析式为),此时记门的最高点到边的距离为;曲线是一段抛物线,其焦点到准线的距离为,此时记门的最高点到边的距离为.(1)试分别求出函数、的表达式;(2)要使得点到边的距离最大,应选用哪一种曲线?此时,最大值是多少?
.(本小题满分14分)如图,在四棱锥中,四边形是菱形,,为的中点.(1)求证:面;(2)求证:平面平面.
(本小题满分14分)已知函数.(1)求函数的最小正周期;(2)求函数在区间上的函数值的取值范围.