已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在,使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.
已知二次函数有两个零点和,且最小值是,函数与的图象关于原点对称; (1)求和的解析式; (2)若在区间上是增函数,求实数的取值范围。
已知在直角坐标平面内,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,点的极坐标是,曲线C的极坐标方程为. (I)求点的直角坐标和曲线C的直角坐标方程; (II)若经过点的直线与曲线C交于A、B两点,求的最小值.
设命题:函数是R上的减函数,命题q:在上的值域为,若“或”为真命题,“且”为假命题,求实数a的取值范围.
已知曲线C的极坐标方程 是=1,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数)。 (1)写出直线与曲线C的直角坐标方程; (2)设曲线C经过伸缩变换得到曲线,设曲线上任一点为,求的最小值。
记关于x的不等式<0 (a>0).的解集为P,不等式|x-1|≤1的解集为Q. (1)求a=3,求P; (2)若Q⊆P,求正数a的取值范围.