已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在,使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.
设数列的前项和为.已知,,. (Ⅰ)设,求数列的通项公式; (Ⅱ)若,证明对任意的,不等式恒成立.
已知椭圆的中心在原点,一个焦点,且长轴长与短轴长的比是. (Ⅰ)求椭圆的方程; (Ⅱ)若椭圆在第一象限的一点的横坐标为,过点作倾斜角互补的两条不同的直线,分别交椭圆于另外两点,,求证:直线的斜率为定值; (Ⅲ)求面积的最大值.
已知函数在处有极值. (Ⅰ)求实数值; (Ⅱ)求函数的单调区间; (Ⅲ)令,若曲线在处的切线与两坐标轴分别交于,两点(为坐标原点),求的面积.
如图,四棱锥的底面是正方形,平面.,,是上的点. (Ⅰ)求证:; (Ⅱ)求二面角的余弦值.
已知向量,,,且. (Ⅰ)求的值; (Ⅱ)求的值.