已知函数的定义域为R,且当时,恒成立,(1)求证:的图象关于点对称;(2)求函数图象的一个对称点。
已知为第三象限角,. (1)化简 (2)若,求的值.
设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E. (1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程; (3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
(1)甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白三种颜色的球各2个,从两个盒子中各取1个球,求取出的两个球是不同颜色的概率。 (2)在单位圆的圆周上随机取三点A、B、C,求是锐角三角形的概率。
在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,G为AD中点. (1)请在线段CE上找到点F的位置,使得恰有直线BF∥平面ACD,并证明这一事实; (2)求平面BCE与平面ACD所成锐二面角的大小; (3)求点G到平面BCE的距离.
直线与椭圆交于,两点,已知,,若且椭圆的离心率,又椭圆经过点,为坐标原点. (Ⅰ)求椭圆的方程; (Ⅱ)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;