如图:在四棱锥中,底面为菱形,,与底面垂直,,为棱的中点,为的中点,为的交点,(1)求证:;(2)求锐二面角的余弦值.
(本小题满分14分)已知抛物线:的焦点为,点是直线与抛物线在第一象限的交点,且.(1)求抛物线的方程;(2)设直线与抛物线有唯一公共点,且直线与抛物线的准线交于点,试探究,在坐标平面内是否存在点,使得以为直径的圆恒过点?若存在,求出点的坐标,若不存在,说明理由.
(本小题满分14分)已知为数列的前项和,(),且.(1)求的值;(2)求数列的通项公式;(3)求证:.
(本小题满分14分)如图,已知中,,,⊥平面,、分别是、的中点.(1)求证:平面⊥平面;(2)设平面平面,求证;(3)求四棱锥B-CDFE的体积V.
(本小题满分12分)下图是某市今年1月份前30天空气质量指数(AQI)的趋势图.(1)根据该图数据在答题卷中完成频率分布表,并在图中补全这些数据的频率分布直方图;(2)当空气质量指数(AQI)小于100时,表示空气质量优良.某人随机选择当月(按30天计)某一天到达该市,根据以上信息,能否认为此人到达当天空气质量优良的可能性超过60%?
(本小题满分12分)已知函数的最小正周期为.(1)求的值; (2)若,,求的值.