(本小题共14分)已知椭圆和圆:,过椭圆上一点引圆的两条切线,切点分别为.(Ⅰ)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率;(ⅱ)若椭圆上存在点,使得,求椭圆离心率的取值范围;(Ⅱ)设直线与轴、轴分别交于点,,求证:为定值.
(本小题满分16分)在平面直角坐标系xOy中,椭圆C:(a>b>0)的上顶点到焦点的距离为2,离心率为.(1)求a,b的值.(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.(ⅰ)若k=1,求△OAB面积的最大值;(ⅱ)若PA2+PB2的值与点P的位置无关,求k的值.
(本小题满分14分)如图,2015年春节,摄影爱好者在某公园处,发现正前方处有一立柱,测得立柱顶端的仰角和立柱底部的俯角均为,已知的身高约为米(将眼睛距地面的距离按米处理)(1) 求摄影者到立柱的水平距离和立柱的高度;(2) 立柱的顶端有一长2米的彩杆绕中点在与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
(本小题满分14分)在正三棱柱中,点是的中点,.(1)求证:∥平面;(2)试在棱上找一点,使.
(本小题满分14分)设△ABC三个内角A、B、C所对的边分别为a,b,c. 已知C=,acosA=bcosB.(1)求角A的大小;(2)如图,在△ABC的外角∠ACD内取一点P,使得PC=2.过点P分别作直线CA、CD的垂线PM、PN,垂足分别是M、N.设∠PCA=α,求PM+PN的最大值及此时α的取值.
已知等比数列中,各项都是正数,且成等差数列,则等于.