(本小题满分12分)甲,乙两人进行射击比赛,每人射击次,他们命中的环数如下表:
(Ⅰ)根据上表中的数据,判断甲,乙两人谁发挥较稳定;(Ⅱ)把甲6次射击命中的环数看成一个总体,用简单随机抽样方法从中抽取两次命中的环数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过的概率.
已知函数,,且的解集为. (Ⅰ)求的值; (Ⅱ)若,且,求证:
已知曲线的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是ρ=2,正方形ABCD的顶点都在上,且A,B,C,D依逆时针次序排列,点A的极坐标为. (Ⅰ)求点A,B,C,D的直角坐标; (Ⅱ)设P为上任意一点,求的取值范围.
如图,、是圆的半径,且,是半径上一点:延长交圆于点,过作圆的切线交的延长线于点.求证:.
已知函数. (Ⅰ)当时,求函数的单调区间; (Ⅱ)当时,不等式恒成立,求实数的取值范围. (Ⅲ)求证:(,e是自然对数的底数).
已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点. (Ⅰ)求抛物线的方程; (Ⅱ)当点为直线上的定点时,求直线的方程; (Ⅲ)当点在直线上移动时,求的最小值.