某学生参加一次世博志愿者测试,已知在备选的10道试题中,预计每道题该学生答对的概率为。规定每位考生都从备选题中随机抽出3道题进行测试,则该学生仅答对2道题的概率是______________.(用数值表示)
知数列的首项前项和为,且(1)证明:数列是等比数列;(2)令,求函数在点处的导数,并比较与的大小.
设椭圆的左右顶点分别为,离心率.过该椭圆上任一点作轴,垂足为,点在的延长线上,且.(1)求椭圆的方程;(2)求动点的轨迹的方程;(3)设直线(点不同于)与直线交于点,为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.
如图所示,已知为圆的直径,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为点,.(1)求证:;(2)求二面角的余弦值.
甲、乙两运动员进行射击训练,已知他们击中目标的环数都稳定在7、8、9、10环,且每次射击成绩互不影响,射击环数的频率分布表如下:若将频率视为概率,回答下列问题:(1)求表中x,y,z的值及甲运动员击中10环的概率;(2)求甲运动员在3次射击中至少有一次击中9环以上(含9环)的概率;(3)若甲运动员射击2次,乙运动员射击1次,表示这3次射击中击中9环以上(含9环)的次数,求的分布列及
如图,在△中,,为中点,.记锐角.且满足.(1)求; (2)求边上高的值.