(本题满分16分;第(1)小题5分,第(2)小题5分,第(3)小题6分)设、为坐标平面上的点,直线(为坐标原点)与抛物线交于点(异于).(1) 若对任意,点在抛物线上,试问当为何值时,点在某一圆上,并求出该圆方程;(2) 若点在椭圆上,试问:点能否在某一双曲线上,若能,求出该双曲线方程,若不能,说明理由;(3) 对(1)中点所在圆方程,设、是圆上两点,且满足,试问:是否存在一个定圆,使直线恒与圆相切.
已知为抛物线的焦点,为此抛物线上的点,且使的值最小,则点的坐标为 ****** .
(本小题15分)如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D ;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1-EC-D的大小为.
(本小题10分)设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.(1)求轨迹E的方程,并说明该方程所表示曲线的形状;(2)点为当时轨迹E上的任意一点,定点的坐标为(3,0),点满足,试求点的轨迹方程。
(本小题10分)某隧道的横段面是由一段抛物线及矩形的三边组成的,尺寸如图所示。某卡车空车时能通过此隧道。现载一集装箱,箱宽3米,车与箱共高米。此时,卡车能否通过此隧道?说明理由。
以下四个命题中:①“若对所有满足的,都有”的否命题;②若直线的方向向量为=(1,,2),平面的法向量为=(-2,0,1),则∥.③曲线与曲线(0﹤k﹤9)有相同的焦点;④是空间四点,若不能构成空间的一个基底,那么四点共面;其中真命题的序号为*****.