本题共有2个小题,第1小题满分8分,第2小题满分8分.如图,反比例函数()的图像过点和,点为该函数图像上一动点,过分别作轴、轴的垂线,垂足为、.记四边形(为坐标原点)与三角形的公共部分面积为.(1)求关于的表达式;(2)求的最大值及此时的值.
已知圆的参数方程为 (为参数),(1)以原点为极点、轴的正半轴为极轴建立极坐标系,写出圆的极坐标方程;(2)已知直线经过原点,倾斜角,设与圆相交于、两点,求到、两点的距离之积。
已知函数(Ⅰ)若在区间上是增函数,求实数的取值范围;(Ⅱ)若是的极值点,求在上的最大值和最小值.
设函数的所有整数值的个数为g(n) .(1)求g(n)的表达式;(2)设的最小值(3)设
某学校要建造一个面积为10000平方米的运动场.如图,运动场是由一个矩形ABCD和分别以AD、BC为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元(1)设半圆的半径OA=(米),试建立塑胶跑道面积S与的函数关系S() ,并求其定义域; (2)由于条件限制,问当取何值时,运动场造价最低?(取3.14)
数列的前项和为,,,(1)求数列的通项公式;(2)等差数列的各项为正,其前项和为,且,又 成等比数列,求;(3)数列的前项和为,求.