已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点,.(Ⅰ)求椭圆的方程;(Ⅱ)若,且,求的值(点为坐标原点);(Ⅲ)若坐标原点到直线的距离为,求面积的最大值.
求经过两条直线:与:的交点,且垂直于直线:直线的方程.
)在棱长为1的正方体中,分别是的中点,在棱上,且,H为的中点,应用空间向量方法求解下列问题. (1)求证:; (2)如图建系,求EF与所成的角的余弦; (3)求FH的长.
给定双曲线。过A(2,1)的直线与双曲线交于两点及,求线段的中点P的轨迹方程.
双曲线的离心率等于2,且与椭圆有相同的焦点,求此双曲线方程
已知+=1的焦点F1、F2,在直线l:x+y-6=0上找一点M,求以F1、F2为焦点,通过点M且长轴最短的椭圆方程.