已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点,.(Ⅰ)求椭圆的方程;(Ⅱ)若,且,求的值(点为坐标原点);(Ⅲ)若坐标原点到直线的距离为,求面积的最大值.
(本小题满分12分)已知等差数列中,,前10项的和 (1)求数列的通项公式; (2)若从数列中,依次取出第2、4、8,…,,…项,按原来的顺序排成一个新的数列,试求新数列的前项和.
(本小题满分14分)已知椭圆的左、右焦点分别为,点是轴上方椭圆上的一点,且, , . (Ⅰ)求椭圆的方程和点的坐标; (Ⅱ)判断以为直径的圆与以椭圆的长轴为直径的圆的位置关系; (Ⅲ)若点是椭圆:上的任意一点,是椭圆的一个焦点,探究以为直径的圆与以椭圆的长轴为直径的圆的位置关系.
(本小题满分14分)已知等差数列的公差大于0,且是方程的两根,数列的前n项的和为,且. (Ⅰ)求数列,的通项公式; (Ⅱ)记,求证:; (Ⅲ)求数列的前项和.
如图,在三棱拄中,侧面,已知 (Ⅰ)试在棱(不包含端点上确定一点的位置,使得; (Ⅱ) 在(Ⅰ)的条件下,求二面角的平面角的正切值.
(本小题满分14分)已知函数. (Ⅰ)若为的极值点,求的值; (Ⅱ)若的图象在点()处的切线方程为,求在区间上的最大值; (Ⅲ)当时,若在区间上不单调,求的取值范围.