在△ABC中,分别为内角A.B.C所对的边,且满足(1)求角A的大小(2)现给出三个条件:①②③试从中选出两个可以确定△ABC的条件写出你的选择,并以此为依据求△ABC的面积(只需写出一个选定方案即可,选多种方案以第一种方案记分)
(本小题满分10分)在平面直角坐标系xOy中,已知抛物 的准线方程为 过点M(0,-2)作抛物线的切线MA,切点为A(异于点O).直线过点M与抛物线交于两点B,C,与直线OA交于点N.(1)求抛物线的方程;(2)试问: 的值是否为定值?若是,求出定值;若不是,说明理由。
(本小题满分10分)某校开设8门校本课程,其中4门课程为人文科学,4门为自然科学,学校要求学生在高中三年内从中选修3门课程,假设学生选修每门课程的机会均等.(1)求某同学至少选修1门自然科学课程的概率;(2)已知某同学所选修的3门课程中有1门人文科学,2门自然科学,若该同学通过人文科学课程的概率都是,自然科学课程的概率都是,且各门课程通过与否相互独立.用表示该同学所选的3门课程通过的门数,求随机变量的概率分布列和数学期望。
选修4-5:不等式选讲(本小题满分10分)若,且,求的最小值.
选修4-4:坐标系与参数方程[(本小题满分10分)己知直线 的参数方程为(t为参数),圆C的参数方程为.(a>0. 为参数),点P是圆C上的任意一点,若点P到直线的距离的最大值为,求a的值。
.选修4-2:矩阵与变换(本小题满分10分)已知 ,矩阵所对应的变换 将直线 变换为自身,求a,b的值。