(本题16分)如图,F是抛物线的焦点,Q是准线与轴的交点,斜率为的直线经过点Q.(1)当K取不同数值时,求直线与抛物线交点的个数;(2)如直线与抛物线相交于A、B两点,求证:是定值(3)在轴上是否存在这样的定点M,对任意的过点Q的直线,如与抛物线相交于A、B两点,均能使得为定值,有则找出满足条件的点M;没有,则说明理由.
某蔬菜基地种植西红柿,由历年市场行情得出,从2 月1日起的300天内,西红柿市场售价P与上市时间t的关系可用图4的一条折线表示;西红柿的种植成本Q与上市时间t的关系可用图5的抛物线段表示. (1)写出图4表示的市场售价P与时间t的函数关系式,写出图5表示的种植成本Q与时间t的函数关系式. (2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?
已知函数是上的奇函数,当时, (1)当时,求函数的解析式; (2)证明函数在区间上是单调增函数.
求下列各式的值. (1);(2)设,求的值; (3).
如图所示,M、N、P分别是正方体ABCD-A1B1C1D1的棱AB、BC、DD1上的点. (Ⅰ)若,求证:无论点P在DD1上如何移动,总有BP⊥MN; (Ⅱ)棱DD1上是否存在这样的点P,使得平面APC1⊥平面A1ACC1?证明你的结论.
如图(1)示,在梯形中,,,且,如图(2)沿将四边形折起,使得平面与平面垂直,为的中点. (Ⅰ)求证: (Ⅱ)求证:; (Ⅲ)求点D到平面BCE的距离。