(本小题满分13分)已知正项数列{an}的首项a1=,函数f(x)=,g(x)=.(1)若正项数列{an}满足an+1=f(an)(n∈N*),证明:{}是等差数列,并求数列{an}的通项公式;(2)若正项数列{an}满足an+1≤f(an)(n∈N*),数列{bn}满足bn=,证明:b1+b2+…+bn<1;(3)若正项数列{an}满足an+1=g(an),求证:|an+1-an|≤·()n-1