(本题16分)如图所示,某人在斜坡P处仰视正对面山顶上一座铁塔,塔高AB=80米,塔所在山高OA=220米,OC=200米,观测者所在斜坡CD近似看成直线,斜坡与水平面夹角为,(1)以射线OC为轴的正向,OB为轴正向,建立直角坐标系,求出斜坡CD所在直线方程;(2)当观察者P视角∠APB最大时,求点P的坐标(人的身高忽略不计).
在如图所示的空间直角坐标系O-xyz中,原点O是BC的中点,A点坐标为,D点在平面yoz上,BC=2,∠BDC=90°,∠DCB=30°. (Ⅰ)求D点坐标; (Ⅱ)求的值.
解关于x的不等式其中.
在△ABC中,角A、B、C的对边分别为a、b、c,. (I)求cosC;(II)若
若函数为定义域上的单调函数,且存在区间(其中,使得当时, 的取值范围恰为,则称函数是上的正函数,区间叫做函数的等域区间. 已知是上的正函数,求的等域区间; 试探求是否存在,使得函数是上的正函数?若存在,请求出实数的取值范围;若不存在,请说明理由.
已知函数,恒过定点. (1)求实数; (2)在(1)的条件下,将函数的图象向下平移1个单位,再向左平移个单位后得到函数,设函数的反函数为,直接写出的解析式; (3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.