(本小题满分12分)设进入某商场的每一位顾客购买甲种商品的概率为,购买乙种商品的概率为,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。(1)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(2)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(3)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望。
(Ⅰ) 以直角坐标系的原点为极点,轴的正半轴为极轴,并在两种坐标系中取相同的长度单位已知直线的极坐标方程为,它与曲线为参数)相交于两点A和B, 求|AB|; (Ⅱ)已知极点与原点重合,极轴与x轴正半轴重合,若直线C1的极坐标方程为:,曲线C2的参数方程为:(为参数),试求曲线C2关于直线C1对称的曲线的直角坐标方程
若点在矩阵对应变换的作用下得到的点为,(Ⅰ)求矩阵的逆矩阵; (Ⅱ)求曲线C:x2+y2=1在矩阵N=所对应变换的作用下得到的新的曲线C'的方程.
已知函数与 (1)设直线分别相交于点,且曲线和在点处的切线平行,求实数的值; (2)为的导函数,若对于任意的,恒成立,求实数的最大值; (3)在(2)的条件下且当取最大值的倍时,当时,若函数的最小值恰为的最小值,求实数的值
如图,在直三棱柱ABC-A1B1C1中,底面△ABC为等腰直角三角形,∠B = 900,D为棱BB1上一点,且面DA1 C⊥面AA1C1C.. (1)求证:D为棱BB1中点; (2)为何值时,二面角A -A1D - C的平面角为600.
如图,某旅游区拟在公路(南北向)旁开发一个抛物线形的人工湖,湖沿岸上每一点到公路的距离与到处的距离相等,并在湖中建造一个三角形的游乐区,三个顶点都在湖沿岸上,直线通道经过处.经测算,在公路正东方向米处,在的正西方向米处,现以点为坐标原点,以线段所在直线为轴建立平面直角坐标系, (1)求抛物线的方程 (2)试确定直线通道的位置,使得三角形游乐区的面积最小,并求出最小值