(本题满分16分,第(1)小题4分,第(2)小题6分,第(2)小题6分)设数列中,若,则称数列为“凸数列”。(1)设数列为“凸数列”,若,试写出该数列的前6项,并求出该6项之和;(2)在“凸数列”中,求证:;(3)设,若数列为“凸数列”,求数列前2010项和。
(附加题)将一个半径适当的小球放入如图所示的容器最上方的入口处, 小球将自由下落.小球在下落过程中,将3次遇到黑色障碍物,最后落入袋或袋中.已知小球每次遇到黑色障碍物时向左、右两边下落的概率都是.(Ⅰ)求小球落入袋中的概率;(Ⅱ)在容器入口处依次放入4个小球,记X为落入袋中小球的个数,试求X=3的概率和X的数学期望.
(15分)某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:方案1:运走设备,此时需花费4000元;方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56 000元;方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.(1)试求方案3中损失费X(随机变量)的分布列;(2)试比较哪一种方案好.
(13分)某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛中获胜的事件是独立的,并且获胜的概率均为.(1)求这支篮球队首次获胜前已经负了两场的概率;(2)求这支篮球队在6场比赛中恰好获胜3场的概率;(3)求这支篮球队在6场比赛中获胜场数的期望.
(12分)从名男同学中选出人,名女同学中选出人,并将选出的人排成一排.(1)共有多少种不同的排法?(2)若选出的名男同学不相邻,共有多少种不同的排法?(用数字表示)
(本大题满分14分) 如图,已知直线L:过椭圆C:的右焦点F,且交椭圆C于A、B两点,点A、B在直线上的射影依次为点D、E.(Ⅰ)若抛物线的焦点为椭圆C的上顶点,求椭圆C的方程;(Ⅱ)若为x轴上一点;求证: A、N、E三点共线.