(本小题满分12分)如图,在三棱锥P-ABC中,,,点 分别是AC、PC的中点,底面ABC. (1)求证:平面; (2)当时,求直线与平面所成的角的大小; (3)当取何值时,在平面内的射影恰好为的重心?
已知函数,。(1)求不等式的解集;(2)若不等式有解,求实数的取值范围。
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为(为参数),点Q的极坐标为。(1)化圆C的参数方程为极坐标方程;(2)直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线的直角坐标方程。
如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。求:(1)⊙O的半径;(2)s1n∠BAP的值。
已知椭圆C:的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切。(1)求椭圆C的方程;(2)若过点M(2,0)的直线与椭圆C交于两点A和B,设P为椭圆上一点,且满足·(O为坐标原点),当 时,求实数t取值范围。
为迎接2013年“两会”(全国人大3月5日-3月18日、全国政协3月3日-3月14日)的胜利召开,某机构举办猜奖活动,参与者需先后回答两道选择题,问题A有四个选项,问题B有五个选项,但都只有一个选项是正确的,正确回答问题A可获奖金元,正确回答问题B可获奖金元.活动规定:参与者可任意选择回答问题的顺序,如果第一个问题回答错误,则该参与者猜奖活动中止.假设一个参与者在回答问题前,对这两个问题都很陌生,试确定哪种回答问题的顺序能使该参与者获奖金额的期望值较大.