(本小题满分14分)在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O.椭圆与圆C的一个交点到椭圆两焦点的距离之和为10。(1)求圆C的方程; (2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在求出Q的坐标;若不存在,请说明理由。
函数f(x)=6cos2+sin ωx-3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为正三角形. (1)求ω的值及函数f(x)的值域; (2)若f(x0)=,且x0∈,求f(x0+1)的值.
如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点. (1)求证:GH∥平面CDE; (2)若CD=2,DB=4,求四棱锥F—ABCD的体积.
已知函数f(x)=ln x-. (1)当a>0时,判断f(x)在定义域上的单调性; (2)f(x)在[1,e]上的最小值为,求实数a的值; (3)试求实数a的取值范围,使得在区间(1,+∞)上函数y=x2的图象恒在函数y=f(x)图象的上方.
已知函数f(x)=-2x+4,令Sn=f()+f()+f()+…+f()+f(1). (1)求Sn; (2)设bn=(a∈R)且bn<bn+1对所有正整数n恒成立,求a的取值范围.
为保增长、促发展,某地计划投资甲、乙两项目,市场调研得知,甲项目每投资百万元需要配套电能2万千瓦,可提供就业岗位24个,增加GDP260万元;乙项目每项投资百万元需要配套电能4万千瓦,可提供就业岗位32个,增加GDP200万元,已知该地为甲、乙两项目最多可投资3 000万元,配套电能100万千瓦,并要求它们提供的就业岗位不少于800个,如何安排甲、乙两项目的投资额,增加的GDP最大?