(本小题满分14分)在直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O.椭圆与圆C的一个交点到椭圆两焦点的距离之和为10。(1)求圆C的方程; (2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆的右焦点F的距离等于线段OF的长,若存在求出Q的坐标;若不存在,请说明理由。
(Ⅰ)已知:,求的值.(Ⅱ)已知,为锐角,求的值.
在中,点E是AB的中点,点F在BD上,且BF=BD,求证:E、F、C三点共线.
(本小题满分14分) (1)为了测量两山顶M,N间的距离,飞机沿水平方向在A,B两点进行测量,A,B,M,N在同一个铅垂平面内(如示意图),飞机能够测量的数据有:①AB=;②A点处对M、N两点的俯角分别为和;B点处对M、N两点的俯角分别为和;请同学们在示意图中标出这四个俯角并用文字和公式写出计算M,N间的距离的步骤. (2)在△ABC 中,若AB=2,AC=2BC,求△ABC面积的最大值.
(本小题满分13分) 已知⊙O经过三点(1,3)、(-3,-1)、(-1,3),⊙M是以两点(7,),(9,)为直径的圆.过⊙M上任一点P作⊙O的切线PA、PB,切点为A、B.(1)求⊙O及⊙M的方程;(2)若直线PA与⊙M的另一交点为Q,当弦PQ最长时,求直线PA的方程;(3)求的最大值与最小值.
(本小题满分12分) 如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的一点.(1)证明:平面PAC⊥平面PBC;(2)若,∠ABC=30°,求二面角A—PB—C的大小.