在以为原点的直角坐标系中,点为的直角顶点,若,且点的纵坐标大于0(1)求向量的坐标;(2)是否存在实数,使得抛物线上总有关于直线对称的两个点?若存在,求实数的取值范围,若不存在,说明理由.
已知抛物线, 过点引一弦,使它恰在点被平分,求这条弦所在的直线的方程.
已知点的坐标分别为,直线相交于点,且它们的斜率之积是,试讨论点的轨迹是什么。
已知命题若非是的充分不必要条件,求的取值范围.
已知焦点在坐标轴上的双曲线,它的两条渐近线方程为,焦点到渐近线的距离为,求此双曲线的方程.
给定两个命题, :对任意实数都有恒成立;:关于的方程有实数根;如果与中有且仅有一个为真命题,求实数的取值范围.