(本小题满分15分)已知函数。(1)若的图象有与轴平行的切线,求的取值范围;(2)若在时取得极值,且时,恒成立,求的取值范围。
如图,在四棱锥中,底面是正方形,其他四个侧面都是等边三角形,与的交点为,为侧棱上一点. (Ⅰ)当为侧棱的中点时,求证:∥平面;(Ⅱ)求证:平面平面;(Ⅲ)(理科)当二面角的大小为时,试判断点在上的位置,并说明理由.
甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
已知在全部105人中抽到随机抽取1人为优秀的概率为(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按的可靠性要求,能否认为“成绩与班级有关系” .(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.参考公式:
在△ABC中,角A、B、C的对边分别为a、b、c,若(Ⅰ)求证:A=B;(Ⅱ)求边长c的值;(Ⅲ)若求△ABC的面积.
已知函数,其中。(1)求函数的单调区间;(2)若直线是曲线的切线,求实数的值;(3)设,求在区间上的最大值(其中为自然对数的底数)。
如图所示,设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图。若抛物线C2:与y轴的交点为B,且经过F1,F2点(1)求椭圆C1的方程;(2)设M),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值。