(本小题满分15分)已知函数。(1)若的图象有与轴平行的切线,求的取值范围;(2)若在时取得极值,且时,恒成立,求的取值范围。
如图,某机场建在一个海湾的半岛上,飞机跑道AB的长为4.5km,且跑道所在直线与海岸线,的夹角为60°(海岸线看作直线),跑道上距离海岸线最近的点B到海岸线的距离BC=4,D为海岸线l上的一点.设CD=xkm(x>),点D对跑道AB的视角为.(1)将tan表示为x的函数:(2)求点D的位置,使得取得最大值.
如图,已知AC⊥平面CDE,BD//AC,△ECD为等边三角形,F为ED边的中点,CD=BD=2AC=2(1)求证:CF∥面ABE;(2)求证:面ABE⊥平面BDE:(3)求三棱锥F—ABE的体积。
记数列的前n项和,且,且成公比不等于1的等比数列。(1)求c的值;(2)设,求数列{}的前n项和Tn.
若关于的方程有实根(Ⅰ)求实数的取值集合(Ⅱ)若对于,不等式恒成立,求的取值范围
已知椭圆C的极坐标方程为,点为其左,右焦点,直线的参数方程为(为参数,).(Ⅰ)求直线和曲线C的普通方程;(Ⅱ)求点到直线的距离之和.