(本小题满分12分)已知函数().(Ⅰ)求的最小正周期,并求的最小值.(Ⅱ)令,若对于恒成立,求实数的取值范围.
(本小题满分10分)(1)设函数,其中θ∈,求导数的取值范围;(2)若曲线与曲线在它们的公共点处具有公共切线,求公共切线的方程.
(本小题满分10分)设命题p:函数的定义域为R, 命题q:双曲线的离心率,(1)如果p是真命题,求实数的取值范围;(2)如果命题“p或q”为真命题,且“p且q”为假命题,求实数的取值范围.
已知等差数列满足;数列的前n项和为,且满足,.(Ⅰ)分别求数列的通项公式;(Ⅱ)若对任意的恒成立,求实数k的取值范围.
在中,角所对的边分别为,且.(Ⅰ)当时,求证:;(Ⅱ)若,,求的值
如图,某小区拟在空地上建一个占地面积为平方米的矩形休闲广场,按照设计要求,休闲广场中间有两个完全相同的矩形绿化区域,周边及绿化区域之间是道路(图中阴影部分),道路的宽度均为米.怎样设计矩形休闲广场的长和宽,才能使绿化区域的总面积最大?并求出其最大面积.