直线过点P(斜率为,与直线:交于点A,与轴交于点B,点A,B的横坐标分别为,记.(Ⅰ)求的解析式;(Ⅱ)设数列满足,求数列的通项公式;(Ⅲ)在(Ⅱ)的条件下,当时,证明不等式.
已知函数,.(I) 当时,求的值;(Ⅱ)已知中,角的对边分别为.若,.求的最小值.
如图,已知动直线经过点,交抛物线于两点,坐标原点是的中点,设直线的斜率分别为.(1)证明:(2)当时,是否存在垂直于轴的直线,被以为直径的圆截得的弦长为定值?若存在,请求出直线的方程;若不存在,请说明理由.
已知函数其中是常数.(1)当时,求在点处的切线方程;(2)求在区间上的最小值.
如图,在直三棱柱中,,点是的中点。(1)证明:平面平面;(2)求与平面所成角的正切值;
已知正项数列的前项和为,且满足(1)求数列的通项公式;(2)设,则是否存在数列,满足对一切正整数都成立?若存在,请求出数列的通项公式;若不存在,请说明理由.