已知 cos α = 1 7 , cos ( α - β ) = 13 14 ,且 0 < β < α < π 2 .
(Ⅰ)求 tan 2 a 的值. (Ⅱ)求 β .
(本小题满分12分)已知都是非零向量,且与垂直,与垂直,求的夹角
(本小题满分12分)如图,两同心圆(圆心在原点)分别与、交于、两点,其中,,阴影部分为两同心圆构成的扇环,已知扇环的面积为. (Ⅰ)设角的始边为轴的正半轴,终边为,求的值; (Ⅱ)求点的坐标.
(本小题满分12分)某单位对三个车间的人数统计情况如下表:用分层抽样的方法从三个车间抽取30人,其中三车间有12人.
(Ⅰ)求的值; (Ⅱ)为了考察职工加班情况,从编号000~199中的一车间男职工中,用系统抽样法先后抽取5人的全年加班天数分别为75,79,82,73,81.已知73对应的编号为145,75对应的编号是多少?并求这五个人加班天数的方差.
如图,菱形的边长为,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,. (1)求证:面; (2)求点M到平面ABD的距离.
已知各项均为正数的数列的前项和为,且,,成等差数列, (1)求数列的通项公式; (2)若,设,求数列的前项和.