设函数.(1)求曲线在点处的切线方程;(2)若函数在区间内单调递增,求的取值范围.
如图,已知四边形和都是菱形,平面和平面互相垂直,且.(Ⅰ)求证:(Ⅱ)求四面体的体积.
如图,在平面直角坐标系xOy中,平行于轴且过点(3,2)的入射光线被直线反射.反射光线交轴于点,圆过点且与都相切.(1)求所在直线的方程和圆的方程;(2)设分别是直线和圆上的动点,求的最小值及此时点的坐标.
如图,在正三棱柱中,分别为中点.(1)求证:平面;(2)求证:平面平面.
如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(Ⅰ)求出该几何体的体积;(Ⅱ)试问在边上是否存在点N,使平面? 若存在,确定点N的位置(不需证明);若不存在,请说明理由.
已知命题和命题,若是的必要不充分条件,求实数的取值范围.