设方程++2=0的实根为,方程++2=0的实根为,试比较的大小
(本小题满分14分) 已知,函数. (1)若函数在区间内是减函数,求实数的取值范围; (2)求函数在区间上的最小值; (3)对(2)中的,若关于的方程有两个不相等的实数解,求实数的取值范围.
(本小题满分14分) 若椭圆:的离心率等于,抛物线:的焦点在椭圆的顶点上。 (Ⅰ)求抛物线的方程; (Ⅱ)求的直线与抛物线交、两点,又过、作抛物线的切线、,当时,求直线的方程;
(本小题满分14分) 数列是递增的等比数列,且. (Ⅰ)求数列的通项公式; (Ⅱ)若,求证数列是等差数列; (Ⅲ)若……,求的最大值.
(本小题满分14分) 如图,正四棱柱中,,点在上且. (1) 证明:平面; (2) 求二面角的余弦值.
(本小题满分12分) 袋中装着标有数字1,2,3,4的小球各3个,从袋中任取3个小球,每个小球被取出的可能性都相等. (Ⅰ)求取出的3个小球上的数字互不相同的概率; (Ⅱ)用表示取出的3个小球上所标的最大数字,求随机变量的分布列和数学期望.