定义区间的区间长度为,已知函数的定义域为,值域为,求区间的长度的最大值与最小值的差
在中,内角、、的对边分别为、、,已知、、成等比数列,且. (Ⅰ)求的值; (Ⅱ)设,求、的值.
是公比大于的等比数列,是的前项和.若,且,,构成等差数列. (Ⅰ)求的通项公式. (Ⅱ)令,求数列的前项和.
设函数. (1)若x=时,取得极值,求的值; (2)若在其定义域内为增函数,求的取值范围; (3)设,当=-1时,证明在其定义域内恒成立,并证明().
已知椭圆的离心率为,且过点. (1)求椭圆的方程; (2)若过点C(-1,0)且斜率为的直线与椭圆相交于不同的两点,试问在轴上是否存在点,使是与无关的常数?若存在,求出点的坐标;若不存在,请说明理由.
某面包厂2011年利润为100万元,因市场竞争,若不开发新项目,预测从2012年起每年利润比上一年减少4万元.2012年初,该面包厂一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第年(为正整数,2012年为第一年)的利润为万元.设从2012年起的前年,该厂不开发新项目的累计利润为万元,开发新项目的累计利润为万元(须扣除开发所投入资金). (1)求,的表达式; (2)问该新项目的开发是否有效(即开发新项目的累计利润超过不开发新项目的累计利润),如果有效,从第几年开始有效;如果无效,请说明理由.