设数列 a n 满足 a 1 = 1 , a 2 = 2 , a n = 1 3 a n - 1 + 2 a n - 2 , n = 3 , . 4 , . . . 。数列 b n 满足 b 1 = 1 , b n n = 2 , 3 , . . . 是非零整数,且对任意的正整数 m 和自然数 k ,都有 - 1 ≤ b m + b m + 1 + … + b m + k ≤ 1 。 (1)求数列 a n 和 b n 的通项公式; (2)记 c n = a n n b n n = 1 , 2 , . . . ,求数列 c n 的前 n 项和 S n 。
(本小题满分12分) 已知几何体A—BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形. (1)求此几何体的体积V的大小; (2)求异面直线DE与AB所成角的余弦值; (3)试探究在DE上是否存在点Q,使得AQBQ并说明理由.
如图,扇形AOB,圆心角AOB等于60°,半径为2,在弧AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOP=θ,求△POC面积的最大值及此时θ的值.
(本小题满分12分) 设为数列{}的前n项和,=kn2+n,n∈N*,其中k是常数. (1)求及; (2)若对于任意的m∈N*,,,成等比数列,求k的值.
(本小题满分10分) 已知:方程有两个不等的负实根,:方程无实根. 若或为真,且为假. 求实数的取值范围。
已知数列中数列满足: (1)求证 数列是等比数列(要指出首项与公比) (2)求数列的通项公式.