设数列 a n 满足 a 1 = 1 , a 2 = 2 , a n = 1 3 a n - 1 + 2 a n - 2 , n = 3 , . 4 , . . . 。数列 b n 满足 b 1 = 1 , b n n = 2 , 3 , . . . 是非零整数,且对任意的正整数 m 和自然数 k ,都有 - 1 ≤ b m + b m + 1 + … + b m + k ≤ 1 。 (1)求数列 a n 和 b n 的通项公式; (2)记 c n = a n n b n n = 1 , 2 , . . . ,求数列 c n 的前 n 项和 S n 。
设为实数,函数 (Ⅰ)求的单调区间与极值; (Ⅱ)求证:当且时,
某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时,(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式; (Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
设函数 (1)设,,证明:在区间内存在唯一的零点; (2) 设,若对任意,有,求的取值范围; (3)在(1)的条件下,设是在内的零点,判断数列的增减性.
已知函数. (1)若函数的图象在处的切线斜率为,求实数的值; (2)在(1)的条件下,求函数的单调区间; (3)若函数在上是减函数,求实数的取值范围.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,直线与椭圆C相交于A、B两点. (Ⅰ)求椭圆C的方程; (Ⅱ)求的取值范围;