如图所示,四棱锥 P - A B C D 的底面 A B C D 是半径为 R 的圆的内接四边形,其中 B D 是圆的直径, ∠ A B D = 60 ° , ∠ B D C = 45 ° , △ A D P ~ △ B A D .
(1)求线段 P D 的长; (2)若 P C = 11 R ,求三棱锥 P - A B C 的体积.
已知为坐标原点,=(),=(1,), .(1)若的定义域为[-,],求y=的单调递增区间;(2)若的定义域为[,],值域为[2,5],求的值.
将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为6的概率;(2)两数之积是6的倍数的概率;(3)以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的内部的概率。
已知(1)若,求x的范围;(2)求的最大值以及此时x的值.
已知=(1,2),=(-2,n) (n>1),与的夹角是45°.(1)求;(2)若与同向,且与-垂直,求.
为了了解某校高一学生体能情况,抽取200位同学进行1分钟跳绳次数测试,将所得数据整理后画出频率分布直方图(如图所示),请回答下列问题:(1)次数在100~110之间的频率是多少?(2)若次数在110以上为达标,试估计该校全体高一学生的达标率是多少?(3)根据频率分布直方图估计,学生跳绳次数的平均数是多少?