(本小题满分15分)平面直角坐标系xOy中,已知以M为圆心的圆M经过点F1(0,-c),F2(0,c),A(c,0)三点,其中c>0.(1)求圆M的标准方程(用含的式子表示);(2)已知椭圆(其中)的左、右顶点分别为D、B,圆M与x轴的两个交点分别为A、C,且A点在B点右侧,C点在D点右侧.①求椭圆离心率的取值范围;②若A、B、M、O、C、D(O为坐标原点)依次均匀分布在x轴上,问直线MF1与直线DF2的交点是否在一条定直线上?若是,请求出这条定直线的方程;若不是,请说明理由.
已知圆:. ⑴直线过点,且与圆交于、两点,若,求直线的方程; ⑵过圆上一动点作平行于轴的直线,设与轴的交点为,若向量,求动点的轨迹方程,并说明此轨迹是什么曲线.
如图1,在直角梯形中,,,,,分别是的中点,现将沿折起,使平面平面(如图2),且所得到的四棱锥的正视图、侧视图、俯视图的面积总和为8. ⑴求点到平面的距离; ⑵求二面角的大小的夹角的余弦值; ⑶在线段上确定一点,使平面,并给出证明过程.
设命题:函数在上单调递增;命题:不等式对任意的恒成立.若“且”为假,“或”为真,求的取值范围.
如图,在棱长都相等的正三棱柱中,分别为,的中点. ⑴求证:; ⑵求证:.
椭圆的两个焦点及其与坐标轴的一个交点正好是一个等边三角形的三个顶点,且椭圆上的点到焦点距离的最小值为,求椭圆的方程.