某单位决定投资元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米造价元,两侧墙砌砖,每米造价元,顶部每平方米造价元,试问:(1)仓库面积的最大允许值是多少?(2)为使达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?
如图,为圆的直径,点、在圆上,矩形所在的平面和圆所在的平面互相垂直,且,. (Ⅰ)求证:平面; (Ⅱ)求三棱锥的体积.
袋中装着分别标有数字1,2,3,4,5的5个形状相同的小球. (1)从袋中任取2个小球,求两个小球所标数字之和为3的倍数的概率; (2)从袋中有放回的取出2个小球,记第一次取出的小球所标数字为x,第二次为y,求点满足的概率.
函数 (1)画出函数的图象; (2)若不等式恒成立,求实数的范围.
如图,四边形是圆内接四边形,延长与的延长线交于点,且, . (1)求证:; (2)当时,求的长.
已知函数,且在处的切线斜率为. (1)求的值,并讨论在上的单调性; (2)设函数,其中,若对任意的总存在,使得成立,求的取值范围.