已知,,为的三边,求证:.
已知抛物线,点,过的直线交抛物线于两点. (1)若线段中点的横坐标等于,求直线的斜率; (2)设点关于轴的对称点为,求证:直线过定点.
如图,在四棱锥中,底面是边长为的正方形,,,且. (Ⅰ)求证:平面; (Ⅱ)求二面角的余弦值; (Ⅲ)棱上是否存在一点,使直线与平面所成的角是?若存在,求的长;若不存在,请说明理由.
如图,在四棱锥中,底面为矩形,底面,、分别是、中点. (1)求证:平面; (2)求证:.
已知椭圆:,直线交椭圆于两点. (Ⅰ)求椭圆的焦点坐标及长轴长; (Ⅱ)求以线段为直径的圆的方程.
在平面直角坐标系中,已知点,动点在轴上的正射影为点,且满足直线. (Ⅰ)求动点M的轨迹C的方程; (Ⅱ)当时,求直线的方程.