(本小题满分15分) 如图,在三棱锥中,,,点分别是的中点,底面.(1)求证:平面;(2)当时,求直线与平面所成角的正弦值;(3)当为何值时,在平面内的射影恰好为的重心.
(本小题满分16分)在平面直角坐标系中,已知椭圆:的离心率,直线过椭圆的右焦点,且交椭圆于,两点.(1)求椭圆的标准方程; (2)过点作垂直于轴的直线,设直线与定直线交于点,试探索当变化时,直线是否过定点?
(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为(m2).(1)求关于的函数关系式;(2)求的最大值.
如图,在多面体中,四边形是菱形,相交于点,,,平面平面,,点为的中点.(1)求证:直线平面;(2)求证:直线平面.
(本小题满分14分)已知的面积为,且.(1)求;(2)若,求.
定义求(1)(2)