某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置.若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券.例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(I)若某位顾客消费128元,求返券金额不低于30元的概率;(II)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元).求随机变量X的分布列和数学期望。
如图三棱锥中,,是等边三角形. (Ⅰ)求证:; (Ⅱ)若二面角的大小为,求与平面所成角的正弦值.
已知数列的前项和,. (Ⅰ)求证:数列是等差数列; (Ⅱ)若,求数列的前项和.
已知函数,且其图象的相邻对称轴间的距离为. (I)求在区间上的值域; (II)在锐角中,若求的面积.
已知函数(其中是实数). (Ⅰ)求的单调区间; (Ⅱ)若,且有两个极值点,求的取值范围. (其中是自然对数的底数)
已知椭圆的焦点为,,且经过点. (Ⅰ)求椭圆的方程; (Ⅱ)设过的直线与椭圆交于、两点,问在椭圆上是否存在一点,使四边形为平行四边形,若存在,求出直线的方程,若不存在,请说明理由.