在直角坐标系中,若,在函数的图像上,称为函数的一组关于原点的中心对称点,关于原点的中心对称点有多少组
设a1,a2,…,an为正数,求证:++…++≥a1+a2+…+an.
若a1≤a2≤…≤an,而b1≥b2≥…≥bn或a1≥a2≥…≥an而b1≤b2≤…≤bn,证明:≤()•().当且仅当a1=a2=…=an或b1=b2=…=bn时等号成立.
设a1,a2,…,an为实数,证明:≤.
已知n个正整数的和是1000,求这些正整数的乘积的最大值.
已知a,b,c为正数,用排序不等式证明:2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b).