二次函数f(x)=ax2+x+1(a>0)的图象与x轴的两个不同的交点的横坐标分别为x1、x2。(1)证明:(1+x1)(1+x2)=1;(2)证明:x1<-1,x2<-1;(3)若函数y=xf(x)在区间(-,-4)上单调递增,试求a的取值范围。
在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1与C1B所成角的大小。
已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e= (1)求椭圆方程;(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2。
已知函数f(x)=(1+x)2-4a lnx(a∈N﹡). (Ⅰ)若函数f(x)在(1,+∞)上是增函数,求a的值; (Ⅱ)在(Ⅰ)的条件下,若关于x的方程f(x)=x2-x+b在区间[1,e]上恰有一个实根,求实数b的取值范围.
已知点列在直线上,P1为直线轴的交点,等差数列的公差为1 。 (1)求、的通项公式;; (2)若,试证数列为等比数列,并求的通项公式。 (3).
已知函数f(x)=ln(1+x)-. (1)求f(x)的极小值; (2)若a、b>0,求证:lna-lnb≥1-.