在工厂生产中,若机器更新过早,则生产潜力未能充分发挥而造成浪费;若更新过迟,老机器生产效率低,维修与损耗费用大,也会造成浪费.因此,需要确定机器使用的最佳年限(即机器使用多少年平均费用最小)某工厂用7万元购买了一台新机器,运输安装费2千元,每年投保、动力消耗固定的费用为2千元;每年的保养、维修、更换易损件的费用逐年增加,第一年为2千元,第二年为3千元,第三年为4千元,……,即每年增加1千元,问这台机器的最佳使用年限是多少年?并求出年平均费用的最小值.
(本题满分14分,第1小题6分,第2小题8分)已知函数的反函数为(1)若,求实数的值;(2)若关于的方程在区间内有解,求实数的取值范围;
(本题满分14分,第1小题6分,第2小题8分)在正方体中,是棱的中点.(1)求直线与平面所成角的大小(结果用反三角函数表示)(2)在棱上是否存在一点,使得平面,若存在,指明点的位置,若不存在,请说明理由.
已知函数,.(1)若直线是函数的图像的一条对称轴,求的值;(2)若,求的值域.
已知函数().(Ⅰ)当时,求函数的图象在点处的切线方程;(Ⅱ)当时,记函数,试求的单调递减区间; (Ⅲ)设函数(其中为常数),若函数在区间上不存在极值,求的最大值.
已知抛物线的焦点为,抛物线上存在一点到焦点的距离为,且点在圆上.(Ⅰ)求抛物线的方程;(Ⅱ)已知椭圆的一个焦点与抛物线的焦点重合,且离心率为.直线交椭圆于、两个不同的点,若原点在以线段为直径的圆的外部,求的取值范围.