已知:如图,射线OA为y=2x(x>0),射线OB为y= –2x(x>0),动点P(x, y)在的内部,于N,四边形ONPM的面积为2..(I)动点P的纵坐标y是其横坐标x的函数,求这个函数y=f(x)的解析式;(II)确定y=f(x)的定义域.
如图,在直三棱柱中,,,是的中点. (1)求证:∥平面; (2)求二面角的余弦值; (3)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.
盒中装有个零件,其中个是使用过的,另外个未经使用. (1)从盒中每次随机抽取个零件,每次观察后都将零件放回盒中,求次抽取中恰有次抽到使用过的零件的概率; (2)从盒中随机抽取个零件,使用后放回盒中,求此时盒中使用过的零件个数为3或4概率.
已知函数,. (1)求方程=0的根; (2)求的最大值和最小值.
已知正项数列满足: (1)求的范围,使得恒成立; (2)若,证明: (3)若,证明:
已知函数,其中. (1)若是的极值点,求的值; (2)求的单调区间; (3)若在上的最大值是,求的取值范围.