已知中,,,平面,,分别是上的动点,且:(1)求证:不论为何值,总有平面平面;(2)当为何值时,平面平面?
设不等式的解集为M,.(1)证明:;(2)比较与的大小,并说明理由.
已知曲线的直角坐标方程为. 以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系. P是曲线上一点,,,将点P绕点O逆时针旋转角后得到点Q,,点M的轨迹是曲线.(1)求曲线的极坐标方程;(2)求的取值范围.
如图,四边形ABCD内接于圆,BD是圆的直径,于点E,DA平分.(1)证明:AE是圆的切线;(2)如果,,求CD.
已知函数,. (1)求函数的最小值; (2)若,证明:当时,.
过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限. (1)求抛物线C的方程及点M的坐标; (2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,如果点M在直线AB的上方,求面积的最大值.