(本小题共13分)已知函数(I)当a=1时,求函数的最小正周期及图象的对称轴方程式;(II)当a=2时,在的条件下,求的值.
如图,设是圆上的动点,点是在轴上投影,为上一点,且.当在圆上运动时,点的轨迹为曲线. 过点且倾斜角为的直线交曲线于两点. (1)求曲线的方程; (2)若点F是曲线的右焦点且,求的取值范围.
在等差数列中,. (1)求数列的通项公式; (2)若数列满足(),则是否存在这样的实数使得为等比数列; (3)数列满足为数列的前n项和,求.
如图1, 在直角梯形中, , ,,为线段的中点. 将沿折起,使平面平面,得到几何体,如图2所示. (1)求证:平面; (2)求二面角的余弦值.
2012年10月莫言获得诺贝尔文学奖后,其家乡山东高密政府准备投资6.7亿元打造旅游带,包括莫言旧居周围的莫言文化体验区,红高粱文化休闲区,爱国主义教育基地等;为此某文化旅游公司向社会公开征集旅游带建设方案,在收到的方案中甲、乙、丙三个方案引起了专家评委的注意,现已知甲、乙、丙三个方案能被选中的概率分别为,且假设各自能否被选中是无关的. (1)求甲、乙、丙三个方案只有两个被选中的概率; (2)记甲、乙、丙三个方案被选中的个数为,试求的期望.
已知函数,其图象过点 (1)求的值; (2)将函数图象上各点向左平移个单位长度,得到函数的图象,求函数在上的单调递增区间.