在直角坐标系中,点M到点的距离之和是4,点M的轨迹是C与x轴的负半轴交于点A,不过点A的直线与轨迹C交于不同的两点P和Q.(I)求轨迹C的方程;(II)当时,求k与b的关系,并证明直线过定点.
甲乙两个盒子里各放有标号为1,2,3,4的四个大小形状完全相同的小球,从甲盒中任取一小球,记下号码后放入乙盒,再从乙盒中任取一小球,记下号码,设随机变量 (1)求的概率; (2)求随机变量X的分布列及数学期望。
(本小题满分12分) 在,角A,B,C的对边分别为。 (1)判断的形状; (2)若的值。
(满分12分)已知为偶函数,曲线过点,且. (Ⅰ)若曲线有斜率为0的切线,求实数的取值范围 (Ⅱ)若当时函数取得极大值,且方程有三个不同的实数解,求实数的取值范围.
(满分12分)函数的定义域为,且满足对于任意的实数,有. (Ⅰ)求的值; (Ⅱ)判断的奇偶性并证明; (III)若,且在上是增函数,解关于的不等式.
(满分12分) 已知函数. (Ⅰ)求函数的反函数解析式; (Ⅱ)判断函数的奇偶性; (III)当时,解不定式.