已知椭圆的离心率为,长轴长为,直线交椭圆于不同的两点A、B。(1)求椭圆的方程;(2)求的值(O点为坐标原点);(3)若坐标原点O到直线的距离为,求面积的最大值。
已知向量(cos,sin) (≠0 ),=" (" – sin,cos),其中O为坐标原点。(1)若=– ,求向量与的夹角;(2)若||≥2||对任意实数、都成立,求实数的取值范围。
在⊿中,内角的对边分别是,已知.(Ⅰ)试判断⊿的形状;(Ⅱ)若求角B的大小.
已知数列中,,.(Ⅰ)求的通项公式;(Ⅱ)若数列中,,,证明:,.
已知椭圆的左、右焦点分别为,.过的直线交椭圆于两点,过的直线交椭圆于两点,且,垂足为.(Ⅰ)设点的坐标为,证明:;(Ⅱ)求四边形的面积的最小值.
设函数.(Ⅰ)证明:的导数;(Ⅱ)若对所有都有,求的取值范围.