对于函数,若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=有且仅有两个不动点0和2.(Ⅰ)试求b、c满足的关系式;(Ⅱ)若c=2时,各项不为零的数列{an}满足4Sn·f()=1,求证:<<;(Ⅲ)设bn=-,Tn为数列{bn}的前n项和,求证:T2009-1<ln2009<T2008.
(本小题满分12分)已知首项都是1的数列()满足. (Ⅰ)令,求数列的通项公式; (Ⅱ)若数列是各项均为正数的等比数列,且,求数列的前项和.
(本小题满分12分)已知圆C的圆心C在第一象限,且在直线上,该圆与轴相切,且被直线截得的弦长为,直线与圆C相交. (Ⅰ)求圆C的标准方程; (Ⅱ)求出直线所过的定点;当直线被圆所截得的弦长最短时,求直线的方程及最短的弦长。
(本小题满分10分)选修4-5:不等式选讲 设函数. (Ⅰ)当时,求不等式的解集; (Ⅱ)若对任意恒成立,求a的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy中,直线l的参数方程为(t为参数,0≤α<π). 以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的极坐标方程为: ρcos2θ=4sinθ. (Ⅰ)求直线l的普通方程与曲线C的直角坐标方程; (Ⅱ)设直线l与曲线C交于不同的两点A、B,若|AB|=8,求α的值.
(本小题满分10分)选修4-1:几何证明选讲 已知△ABC中,,D为△ABC 外接圆劣弧AC上的点(不与点A、C重合),延长BD至E,延长AD交BC的延长线于F. (Ⅰ)求证:; (Ⅱ)求证:.