对于函数,若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=有且仅有两个不动点0和2.(Ⅰ)试求b、c满足的关系式;(Ⅱ)若c=2时,各项不为零的数列{an}满足4Sn·f()=1,求证:<<;(Ⅲ)设bn=-,Tn为数列{bn}的前n项和,求证:T2009-1<ln2009<T2008.
一个的矩阵有两个特征值:,它们对应的一个特征向量分别为:求矩阵M.
设函数. (1)若函数图像上的点到直线距离的最小值为,求的值; (2)关于的不等式的解集中的整数恰有3个,求实数的取值范围; (3)对于函数定义域上的任意实数,若存在常数,使得和都成立,则称直线为函数的 “分界线”.设,试探究是否存在“分界线”?若存在,求出“分界线”的方程,若不存在,请说明理由.
已知数列 ,满足数列的前项和为,. (Ⅰ)求数列的通项公式; (Ⅱ)求证:; (Ⅲ)求证:当时,.
已知椭圆和圆:,过椭圆上一点P引圆O的两条切线,切点分别为A,B. (1)(ⅰ)若圆O过椭圆的两个焦点,求椭圆的离心率e的值; (ⅱ)若椭圆上存在点P,使得,求椭圆离心率e的取值范围; (2)设直线AB与x轴、y轴分别交于点M,N,问当点P在椭圆上运动时,是否为定值?请证明你的结论.
江苏某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边成角为(如图),考虑到防洪堤坚固性及石块用料等因素,设计其横断面要求面积为平方米,且高度不低于米,设防洪堤横断面的腰长为米,外周长(梯形的上底线段BC与两腰长的和)为米. (1)求关于的函数关系式,并指出其定义域; (2)要使防洪提的横断面的外周长不超过10.5米,则其腰长应在什么范围内?