已知数列 { a n } 的首项 a 1 = 3 5 , a n + 1 = 3 a n 2 a n + 1 , n = 1 , 2 . . . . (Ⅰ)求 { a n } 的通项公式; (Ⅱ)证明:对任意的 x > 0 , a n ≥ 1 1 + x - 1 ( 1 + x ) 2 ( 2 3 n - x ) , n = 1 , 2 . . . ; (Ⅲ)证明: a 1 + a 2 + . . . + a n > n 2 n + 1 .
动点P从边长为1的正方形ABCD的顶点出发顺次经过B、C、D再回到A;设表示P点的行程,表示PA的长,求关于的函数解析式.
计算下列各式: ⑴ ;⑵ (a>0).
是否存在实数a,使函数为奇函数,同时使函数为偶函数,证明你的结论。
设函数 (Ⅰ)证明其中为k为整数 (Ⅱ)设为的一个极值点,证明 (Ⅲ)设在(0,+∞)内的全部极值点按从小到大的顺序排列为,证明:
在△ABC中,a、b、c分别为角A、B、C的对边,表示该三角形的面积,且 (Ⅰ)求角的大小; (Ⅱ)若,求b的值.