已知,设命题:函数为减函数.命题:当时,函数恒成立.如果命题“”为真命题,“”为假命题,求实数的取值范围.
已知二次函数f(x)=ax2+x,若对任意x1,x2∈R,恒有2f()≤f(x1)+f(x2)成立,不等式f(x)<0的解集为A. (1)求集合A; (2)设集合B={x||x+4|<a},若集合B是集合A的子集,求a的取值范围.
已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}. (1)若A∪B=A,求实数m的取值范围; (2)当x∈Z时,求A的非空真子集的个数; (3)当x∈R时,若A∩B=∅,求实数m的取值范围.
已知集合A={x|≥1,x∈R},B={x|x2-2x-m<0}. (1)当m=3时,求A∩(∁RB); (2)若A∩B={x|-1<x<4},求实数m的值.
已知集合M={x|x(x-a-1)<0,x∈R},N={x|x2-2x-3≤0},若M∪N=N,求实数a的取值范围.
如图,,为圆柱的母线,是底面圆的直径,,分别是,的中点,. (1)证明:; (2)证明:; (3)假设这是个大容器,有条体积可以忽略不计的小鱼能在容器的任意地方游弋,如果鱼游到四棱锥内会有被捕的危险,求鱼被捕的概率.