已知数列满足,且对一切有,其中, (Ⅰ)求证对一切有,并求数列的通项公式;(Ⅱ)记,求数列的前项和;(Ⅲ)求证.
如图,四棱锥P—ABCD中,底面四边形ABCD是正方形,侧面PDC是边长为a的正 三角形,且平面PDC⊥底面ABCD,E为PC的中点。
(I)求异面直线PA与DE所成的角;
如图,直二面角D—AB—E中,四边形ABCD是边长为2的正方形,AE=EB,F 为CE上的点,且BF⊥平面ACE. (Ⅰ)求证:AE⊥平面BCE; (Ⅱ)求二面角B—AC—E的余弦值; (Ⅲ)求点D到平面ACE的距离.
已知,为上的点. (1)当; (2)当二面角——的大小为的值.
如图,在五面体,ABCDF中,点O是矩形ABCD的对角线的交点,面ABF是等边三角形,棱EF=. (1)证明EO∥平面ABF; (2)问为何值时,有OF⊥ABE,试证明你的结论.
如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F 是CD的中点。 (I)求证:AF//平面BCE; (II)求证:平面BCE⊥平面CDE; (III)求平面BCE与平面ACD所成锐二面角的大小。