在等差数列中,,,其中是数列的前项之和,曲线的方程是,直线的方程是.(1) 求数列的通项公式;(2) 当直线与曲线相交于不同的两点,时,令,求的最小值;(3) 对于直线和直线外的一点P,用“上的点与点P距离的最小值”定义点P到直线的距离与原有的点到直线距离的概念是等价的,若曲线与直线不相交,试以类似的方式给出一条曲线与直线间“距离”的定义,并依照给出的定义,在中自行选定一个椭圆,求出该椭圆与直线的“距离”.
某工厂对200个电子元件的使用寿命进行检查,按照使用寿命(单位:h), 可以把这批电子元件分成第一组[100,200],第二组(200,300],第三组(300,400],第四组(400,500],第五组(500,600],第六组(600,700].由于工作中不慎将部分数据丢失,现有以下部分图表:
(1)求图2中的A及表格中的B,C,D,E,F,G,H,I的值; (2)求图2中阴影部分的面积; (3)若电子元件的使用时间超过300h为合格产品,求这批电子元件合格的概率
已知椭圆,分别为左顶点和上顶点,F为右焦点,过F作轴的垂线交椭圆于点C,且直线与直线OC平行. (1)求椭圆的离心率; (2)已知定点M(),为椭圆上的动点,若的重心轨迹经过点,求椭圆的方程.
甲打靶射击,有4发子弹,其中有一发是空弹(“空弹”即只有弹体没有弹头的子弹). (1)如果甲只射击次,求在这一枪出现空弹的概率; (2)如果甲共射击次,求在这三枪中出现空弹的概率; (3)如果在靶上画一个边长为的等边,甲射手用实弹瞄准了三角形区域随机射击,且弹孔都落在三角形内。求弹孔与三个顶点的距离都大于1的概率(忽略弹孔大小).
已知命题,若是的充分不必要条件,求实数的取值范围.
已知椭圆的离心率,过点和的直线与原点的距离为. (1)求椭圆的方程; (2)设为椭圆的左、右焦点,过作直线交椭圆于、两点,求的内切圆半径的最大值