在等差数列中,,,其中是数列的前项之和,曲线的方程是,直线的方程是.(1) 求数列的通项公式;(2) 当直线与曲线相交于不同的两点,时,令,求的最小值;(3) 对于直线和直线外的一点P,用“上的点与点P距离的最小值”定义点P到直线的距离与原有的点到直线距离的概念是等价的,若曲线与直线不相交,试以类似的方式给出一条曲线与直线间“距离”的定义,并依照给出的定义,在中自行选定一个椭圆,求出该椭圆与直线的“距离”.
⑴求数列的通项公式;⑵设,若对恒成立,求实数的取值范围;⑶是否存在以为首项,公比为的数列,,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由
⑴求函数的解析式;⑵若对于区间上任意两个自变量的值都有,求实数的最小值;⑶若过点可作曲线的三条切线,求实数的取值范围
⑴求椭圆的方程;⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线 有公共点时,求△面积的最大值
如图,直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,AB=BC=,BB1=3,D为A1C1的中点,F在线段AA1上. (1)AF为何值时,CF⊥平面B1DF? (2)设AF=1,求平面B1CF与平面ABC所成的锐二面角的余弦值.
已知椭圆的离心率为,过右顶点A的直线l与椭圆C相交于A、B两点,且. (1)求椭圆C和直线l的方程;(2)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若曲线与D有公共点,试求实数m的最小值.