若 f 1 ( x ) = 3 x - p 1 , f 2 ( x ) = 3 x - p 2 , x ∈ R , p 1 , p 2 为常数,且 f ( x ) = { f 1 ( x ) , f 1 ( x ) ≤ f 2 ( x ) f 2 ( x ) , f 1 ( x ) > f 2 ( x ) . (Ⅰ)求 f ( x ) = f 1 ( x ) 对所有的实数 x 成立的充要条件(用 p 1 , p 2 表示); (Ⅱ)设 a , b 为两实数, a < b 且 p 1 , p 2 ∈ ( a , b ) ,若 f ( a ) = f ( b ) ,求证: f ( x ) 在区间 [ a , b ] 上的单调增区间的长度和为 b - a 2 (闭区间 [ m , n ] 的长度定义为 n - m ).
如图,四棱锥的底面ABCD是平行四边形,,,面,设为中点,点在线段上且. (1)求证:平面; (2)设二面角的大小为,若,求的长.
如图,在平面直角坐标系中,平行于轴且过点(3,2)的入射光线被直线反射.反射光线交轴于点,圆过点且与都相切. (1)求所在直线的方程和圆的方程; (2)设分别是直线和圆上的动点,求的最小值及此时点的坐标.
(本小题满分8分)已知;,若是的必要非充分条件,求实数的取值范围.
已知是关于的二次方程,的两个实数根,求: (1)的值;(2)的值.
在平面直角坐标系中,已知圆,圆. (1)若过点的直线被圆截得的弦长为,求直线的方程; (2)圆是以1为半径,圆心在圆:上移动的动圆 ,若圆上任意一点分别作圆的两条切线,切点为,求的取值范围 ;
(3)若动圆同时平分圆的周长、圆的周长,则动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.