若 f 1 ( x ) = 3 x - p 1 , f 2 ( x ) = 3 x - p 2 , x ∈ R , p 1 , p 2 为常数,且 f ( x ) = { f 1 ( x ) , f 1 ( x ) ≤ f 2 ( x ) f 2 ( x ) , f 1 ( x ) > f 2 ( x ) . (Ⅰ)求 f ( x ) = f 1 ( x ) 对所有的实数 x 成立的充要条件(用 p 1 , p 2 表示); (Ⅱ)设 a , b 为两实数, a < b 且 p 1 , p 2 ∈ ( a , b ) ,若 f ( a ) = f ( b ) ,求证: f ( x ) 在区间 [ a , b ] 上的单调增区间的长度和为 b - a 2 (闭区间 [ m , n ] 的长度定义为 n - m ).
已知函数且的图象经过点. (1)求函数的解析式;(2)设,用函数单调性的定义证明:函数在区间上单调递减;(3)解不等式:.
已知函数(其中)的部分图象如图所示.(1)求函数的解析式;(2)求函数的单调增区间;(3)求方程的解集.
已知,,当为何值时,(1)与垂直?(2)与平行?平行时它们是同向还是反向?
已知,且是第一象限角.(1)求的值;(2)求的值.
设函数的定义域是,对于任意的,有,且当时,.(1)求的值;(2)判断函数的奇偶性;(3)用函数单调性的定义证明函数为增函数;(4)若恒成立,求实数的取值范围.