若 f 1 ( x ) = 3 x - p 1 , f 2 ( x ) = 3 x - p 2 , x ∈ R , p 1 , p 2 为常数,且 f ( x ) = { f 1 ( x ) , f 1 ( x ) ≤ f 2 ( x ) f 2 ( x ) , f 1 ( x ) > f 2 ( x ) . (Ⅰ)求 f ( x ) = f 1 ( x ) 对所有的实数 x 成立的充要条件(用 p 1 , p 2 表示); (Ⅱ)设 a , b 为两实数, a < b 且 p 1 , p 2 ∈ ( a , b ) ,若 f ( a ) = f ( b ) ,求证: f ( x ) 在区间 [ a , b ] 上的单调增区间的长度和为 b - a 2 (闭区间 [ m , n ] 的长度定义为 n - m ).
已知函数在处取得极值. (1)讨论和是函数的极大值还是极小值; (2)过点作曲线的切线,求此切线方程.
已知函数的图象过点P(0,2),且在点M处的切线方程为. (1)求函数的解析式; (2)求函数的单调区间.
已知函数,若存在,使,则称是函数的一个不动点.设二次函数. (1)对任意实数,函数恒有两个相异的不动点,求的取值范围; (2)在(1)的条件下,若的图象上两点的横坐标是的不动点,且两点关于直线对称,求的最小值.
已知向量,,且与满足,其中实数. (1)试用表示; (2)求的最小值,并求此时与的夹角的值.
设为数列{}的前项和,已知,2,N (1)求,并求数列{}的通项公式;(2)求数列{}的前项和.