若 f 1 ( x ) = 3 x - p 1 , f 2 ( x ) = 3 x - p 2 , x ∈ R , p 1 , p 2 为常数,且 f ( x ) = { f 1 ( x ) , f 1 ( x ) ≤ f 2 ( x ) f 2 ( x ) , f 1 ( x ) > f 2 ( x ) . (Ⅰ)求 f ( x ) = f 1 ( x ) 对所有的实数 x 成立的充要条件(用 p 1 , p 2 表示); (Ⅱ)设 a , b 为两实数, a < b 且 p 1 , p 2 ∈ ( a , b ) ,若 f ( a ) = f ( b ) ,求证: f ( x ) 在区间 [ a , b ] 上的单调增区间的长度和为 b - a 2 (闭区间 [ m , n ] 的长度定义为 n - m ).
如图所示,平面,四边形是矩形,,M,N分别是AB,PC的中点, (1)求平面和平面所成二面角的大小, (2)求证:平面 (3)当的长度变化时,求异面直线PC与AD所成角的可能范围.
如图,AC是圆O的直径,点B在圆O上,,交AC于点M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1, (1)证明; (2)(文科)求三棱锥的体积 (理科)求平面和平面所成的锐二面角的正切值.
如图棱柱的侧面是菱形,,D是的中点,证明: (Ⅰ)∥面 (Ⅱ)平面平面.
已知函数,其中实数. (1)当时,求不等式的解集; (2)若不等式的解集为,求的值.
在直角坐标系中,曲线的参数方程为为参数),以该直角坐标系的原点为极点,轴的正半轴为极轴的极坐标系下,曲线的方程为. (1)求曲线的普通方程和曲线的直角坐标方程; (2)设曲线和曲线的交点、,求.