设计一种正四棱柱形冰箱,它有一个冷冻室和一个冷藏室,冷藏室用两层隔板分为三个抽屉,问:如何设计它的外形尺寸,能使得冰箱体积为定值时,它的表面和三层隔板(包括冷冻室的底层)面积之和S值最小(参考数据:,,)
已知.(1)求函数在区间上的最小值;(2)对一切实数,恒成立,求实数的取值范围;(3)证明对一切,恒成立.
设椭圆的左焦点为,过点的直线与椭圆相交于两点,直线的倾斜角为60o,.(1)求椭圆的离心率; (2)如果,求椭圆的方程
张家界某景区为提高经济效益,现对某一景点进行改造升级,从而扩大内需,提高旅游增加值,经过市场调查,旅游增加值万元与投入万元之间满足:为常数。当万元时,万元;当万元时,万元。(参考数据:)(1)求的解析式;(2)求该景点改造升级后旅游利润的最大值。(利润=旅游增加值-投入)
如图,在五面体中,四边形是正方形,平面,∥,, ,。(Ⅰ)求异面直线与所成角的余弦值;(Ⅱ)证明⊥平面;(Ⅲ)求二面角的正切值
某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。(1)求甲中奖且乙、丙都没有中奖的概率;(2)求中奖人数ξ的分布列及数学期望Eξ