(本小题满分16分)某水库堤坝因年久失修,发生了渗水现象,当发现时已有200m2的坝面渗水.经测算知渗水现象正在以每天4m2的速度扩散.当地政府积极组织工人进行抢修.已知每个工人平均每天可抢修渗水面积2m2,每人每天所消耗的维修材料费75元,劳务费50元,给每人发放50元的服装补贴,每渗水1m2的损失为250元.现在共派去x名工人,抢修完成共用n天.(Ⅰ)写出n关于x的函数关系式;(Ⅱ)要使总损失最小,应派去多少名工人去抢修(总损失=渗水损失+政府支出).
已知椭圆()的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆相切. (1)求椭圆的方程; (2)设为椭圆上一点,若过点的直线与椭圆相交于不同的两点和,满足(为坐标原点),求实数的取值范围.
如图,已知四棱锥的底面为菱形,,,. (1)求证:; (2)求二面角的余弦值.
已知数列的前项和(),数列的前项和(). (1)求数列的前项和; (2)求数列的前项和.
命题存在实数,;命题对任意恒成立.若或为真,且为假,试求的取值范围.
已知函数在区间[2,3]上有最大值4和最小值1,设=. (1)求a、b的值; (2)若不等式,在上有解,求实数k的取值范围.